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Abstract The basic elements of the theory of slow invariant manifolds and canard phenomena of singularly
perturbed nonlinear differential equations in the context of thermal-explosion problems are outlined. The
mathematical results are applied to the investigation of the critical phenomena in autocatalytic combustion
models described by singularly perturbed differential equations with lumped and distributed parameters.
Critical regimes are modeled by canards (one-dimensional stable-unstable slow invariant manifolds). The
geometric approach in combination with asymptotic and numeric methods permits to explain the strong
parametric sensitivity and to obtain asymptotic representations of the critical conditions of self-ignition.
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1 Introduction

The evaluation of critical regimes thought of as regimes separating the regions of explosive and nonex-
plosive chemical reactions is the main mathematical problem of thermal-explosion theory. The interest
in critical phenomena is brought about not only for reasons of safety; indeed, the critical regime is often
the most effective in technological processes. Here the sense of criticality is as follows. The critical regime
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corresponds to a chemical reaction separating the domains of self-accelerating reactions and domains of
slow reactions.

Various investigations of critical phenomena in thermal-explosion theory have been reported in [1–7].
Because of the considerable difference between velocities related to thermal and concentrational changes,
singularly perturbed systems of differential equations serve as mathematical models of such problems. But
in the above works the authors restrict their consideration to the study of the zero-order approximation.
This does not permit them to explain the strong parametric sensitivity of this problem, as well as to examine
the transformation of the solutions in the vicinity of the limit of self-ignition.

An important part of the paper is dedicated to modeling critical combustion regimes and to finding crit-
ical values of the control parameters using novel mathematical methods based on the theory of “canards”
[8]. In the majority of the literature devoted to canards the term “canard” is associated with periodic
trajectories [9]. In our work a canard is a trajectory of a singularly perturbed system of differential equa-
tions if it follows first a stable invariant manifold, and then an unstable one. In both cases the distances
traveled are not infinitesimally small. It should be noted that a canard may be considered as a result of
gluing stable (attractive) and unstable (repelling) slow invariant manifolds at one point of the breakdown
surface due to the availability of an additional scalar parameter in the differential system. We shall use
canards as separating solutions corresponding to the critical regimes of chemical reactions. This approach
was proposed for the first time in [10, 11] and was then applied in [12–14]. This approach permits to work
out the algorithms of asymptotic representations of the critical values of the parameter of initial conditions
and to describe the transfer regimes.

2 Statement of the problem

2.1 Singular perturbations and canards

The main object of our consideration is the following singularly perturbed system

dx
dt

= f (x, y, ε), (1)

ε
dy
dt

= g(x, y,α, ε), (2)

where ε is a small positive parameter, α is a scalar parameter, y is a scalar variable, x is a vector of dimension
n. The case of the vector variable y can be considered as well.

Recall (see [15]) that the slow surface S (or Sα) of system (1), (2) is the surface described by the equation

g(x, y,α, 0) = 0. (3)

Let y = φ(x,α) be an isolated solution of Eq. 3. We call the subset Ss
α(S

u
α) of S defined by

∂g
∂y
(x,φ(x,α),α, 0) < 0 (>0)

the stable (unstable) subset of Sα .
The set of irregular points (critical points of the projection of the slow surface onto the base) defined by

∂g
∂y
(x,φ(x,α),α, 0) = 0

on Sα is called the breakdown surface. Its dimension is equal to n − 1. At all points of this surface the
linearization of the fast subsystem (2) in a fiber has a zero eigenvalue [16].

In an ε-neighborhood of Ss
α (S

u
α) there exists a stable (unstable) slow invariant manifold Ss

α,ε (S
u
α,ε). This

means that the slow surface is an approximation of a slow invariant manifold (for ε = 0) [17].
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The availability of the additional scalar parameter α provides the possibility of gluing the stable and
unstable invariant manifolds at one point of the breakdown surface. The canard trajectory passes through
this point. To explain this situation, consider the following system

ẋ = 1, ẏ = 0, εż = 2xz + α − y,

where x, y and z are scalar variables, ε is a small positive parameter, α is a scalar parameter. The different
canards are determined by

ẋ = 1, y = y0, z = 0,

that is, each of them passes through the unique gluing point x = 0, y = y0, z = 0 on the breakdown curve
x = 0 of the slow surface 2xz + y0 − y = 0 for α = y0.

It should be noted that in the early papers devoted to canards in the case dim x = 1, the existence of a
unique canard corresponding to a unique value of the parameter α = α∗ was stated (more precisely, the
“canard” value of parameter α∗ exists on an interval of order O(e−1/ε)). But in the case dim x > 1 another
picture is beginning to emerge. It was shown that a one-parameter family of canards exists [13].

2.2 Model with lumped parameters

Thermal explosion occurs when chemical reactions produce heat too rapidly for a stable balance between
heat production and heat loss. The exothermic oxidation reaction is usually modeled as a single-step reac-
tion obeying an Arrhenius temperature dependence. The first model for the self-ignition was constructed
by Semenov in 1928 (see, for example [18]). The basic idea of the model is a competition between heat pro-
duction in the reactant vessel (due to an exothermic reaction) and heat losses on the vessel’s surface. Heat
losses were assumed proportional to the temperature excess over the ambient temperature (Newtonian
cooling). The main assumption was that there is no reactant conversion during the fast highly exothermic
reaction. This assumption implies the absence of the energy-conservation law in the model. This gave the
possibility of constructing an extremely simple and attractive mathematical model. Under spatial unifor-
mity of the temperature we obtain the classical model of thermal explosion with reactant consumption in
dimensionless form [2, 7]:

ε
dθ
dτ

= η(1 − η) exp (θ/(1 + βθ))− αθ , (4)

dη
dτ

= η(1 − η) exp (θ/(1 + βθ)), (5)

η(0) = η0/ (1 + η0) = η̄0, θ(0) = 0.

Here τ is the dimensionless time; θ and η are the dimensionless temperatures and the depth of conversion;
η0 is the criterion of autocatalyticity; the small parameters β and ε characterize the physical properties of
the gas mixture and α is the dimensionless heat-loss parameter.

It should be noted that the system (4), (5) is singularly perturbed. According to the standard approach
to such systems, the limiting case ε → 0 is examined, and discontinuous solutions of the reduced system
are analyzed. This makes it possible to determine some critical values of the initial conditions that provide
a jump transition from the slow regime to the explosive one. The study of transitional regimes requires the
application of higher approximations in the asymptotic analysis of the systems of the type given in Eqs. 4
and 5.
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2.3 Model with distributed parameters

Consider nonlinear singularly perturbed parabolic system

ε
∂θ

∂τ
= η(1 − η) exp (θ/(1 + βθ))+ 1

δ
Dξ θ , (6)

ε
∂η

∂τ
= ε η(1 − η) exp (θ/(1 + βθ))+ 1

�
Dξ η, (7)

where

Dξ (·) = ∂2(·)
∂ξ2 + n

ξ

∂(·)
∂ξ

, n = 0, 1, 2,

with boundary conditions

∂θ

∂ξ

∣
∣
∣
∣
ξ=0

= 0, θ

∣
∣
∣
ξ=1

= 0,
∂η

∂ξ

∣
∣
∣
∣
ξ=0

= 0,
∂η

∂ξ

∣
∣
∣
∣
ξ=1

= 0 (8)

and initial conditions

θ

∣
∣
∣
τ=0

= 0, η

∣
∣
∣
τ=0

= η0/(1 + η0).

This is a mathematical model for the problem of thermal explosion involving heat transfer and diffusion.
Here θ is the dimensionless temperature; η is the dimensionless depth of conversion; τ is the dimensionless
time; ε and β are small positive parameters; �−1 is a constant diffusion coefficient; δ is a Frank–Kamenetsky
criterion, that is, the scalar parameter characterizing the initial state of the system. Depending on the value
of δ, reaction is either explosive or proceeds slowly. The value of the parameter δ separating slow and
explosive regimes is called critical.

The critical value of δ is calculated as an asymptotic series in powers of the small parameter ε and
the corresponding critical regimes are modeled by canards. For n = 0 (plane-parallel reactor), n = 1
(cylindrical reactor), n = 2 (spherical reactor), the corresponding values of δ are calculated.

2.4 Two-phase model of combustion

We now consider combustion models for a rarefied gas mixture in an inert porous or in a dusty medium. We
assume that the temperature distribution and phase-to-phase heat exchange are uniform. The chemical-
conversion kinetics are represented by a one-stage, irreversible reaction. The dimensionless model in the
case of an autocatalytic reaction has the form [19]

γ θ̇ = η(1 − η) exp (θ/(1 + βθ))− α(θ − θc)− κθ , (9)

γcθ̇c = α(θ − θc), (10)

η̇ = η(1 − η) exp (θ/(1 + βθ)), (11)

η(0) = η0/ (1 + η0) , θ(0) = θc(0) = 0.

Here, θ and θc are the dimensionless temperatures of the reactant and inert phases, respectively; η is the
depth of conversion; η0 is the criterion of autocatalyticity; the small parameters β and γ characterize the
physical properties of gas mixture. The terms −κθ and −α(θ − θc) reflect the external heat dissipation and
phase-to-phase heat exchange. The parameter γc characterizes the physical features of the inert phase.
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3 Classic model with lumped parameters

The system showing autocatalytic reaction features is

ε
dθ
dτ

= η(1 − η) exp (θ/(1 + βθ))− αθ , (12)

dη
dτ

= η(1 − η) exp (θ/(1 + βθ)). (13)

To simplify the demonstration of the main qualitative effects we employ a widely used assumption, β = 0, in
thermal-explosion theory (more detailed analysis shows that the differences between the results obtained
for cases β = 0 and β �= 0 are not essential; see Sect. 5). For β = 0 the slow curve Sα of system (12), (13) is
described by the equation

η(1 − η)eθ − αθ = 0.

The curve Sα has a different form depending on whether α > e/4 or α < e/4 (see Fig. 1). In the region
θ < 1 connected components of the curve Sα will be stable and in the region θ > 1 they will be unstable.
We shall denote a stable part Sα as Ss

α and an unstable part as Su
α . There exist invariant manifolds Ss

α,ε and
Su
α,ε at a distance of O(ε) from the curve Sα , corresponding to Ss

α and Su
α .

We shall give a qualitative description of the behavior of the system (12), (13) for the changing parameter
α. When α > e/4 the trajectories of the system in the phase plane move along the stable branch Ss

α and the
value of θ does not exceed 1. These trajectories correspond to the slow regimes.

For α < e/4, the stable part Ss
α of the curve Sα consists of two separated branches and the system’s

trajectories, having reached the jump point at the tempo of the slow variable along Ss
α , jumps into the

explosive regime.
Due to the continuous dependence of the right-hand sides of (12), (13) on the parameter α, we may

assume that there are some intermediate trajectories in the region between those shown above in the
neighborhood of α = e/4, and a critical one as well. With α = e/4 the slow curve Ss

α has a self-intersection
point (1, 1/2), and in this case it is possible to find the critical value of the parameter α in the form

α = α(ε) = α0 + εα1 + ε2α2 + · · · , α0 = e/4. (14)

There are two values of the parameter, namely α = α∗ and α = α∗∗, for which the trajectory of (12), (13)
passes along the stable and the unstable parts of the slow curve for times that are not infinitesimally small.

The value α = α∗ corresponds to the canard, passing along the lower part of Ss
α and then along the upper

part of Su
α . The canard is taken as a mathematical object to model the critical trajectory, which corresponds

Fig. 1 The slow curve of the system (12), (13) in the case β = 0
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Fig. 2 Canard
trajectories of system for
ε = 0·05,
α′ = 0·659941603,
α′′ = 0·659941646, α′′′ =
0·659952218

to a chemical reaction separating the domain of self-acceleration reactions (α < α∗) and the domain of
nonexplosive reactions (α > α∗).

The value α = α∗∗ is also important in a qualitative analysis of the system (12), (13). With α = α∗∗
there exist the trajectory (so-called false canard), passing along the lower part of Su

α and then along the
upper part of Ss

α . For α > α∗∗ we get a region of slow regimes and the trajectories of system (12), (13) will
pass along the stable part of the slow curve.

Figure 2 shows numerical results for the canard trajectories of the system (12), (13) for α from the
interval (α∗,α∗∗) (α∗ < α′ < α′′ < α′′′ < α∗∗).

The coefficients of the asymptotic series for α∗ and α∗∗ can be found by the methods of [10]. To calculate
the critical value of the parameter α = α∗ we substitute (14) and the expression for corresponding canard

η = H(θ , ε) ≡ H0(θ)+ εH1(θ)+ · · ·
in (12), (13) and obtain
(

H(θ , ε) (1 − H(θ , ε)) eθ − α(ε)θ
)

H′(θ , ε) = εH(θ , ε) (1 − H(θ , ε)) eθ

or, in more detailed form,
(

(H0(θ)+ εH1(θ)+ · · · ) (1 − H0(θ)− εH1(θ)− · · · ) eθ − (α0 + εα1 + · · · )θ
)[

H
′
0(θ)+ εH

′
1(θ)+ · · ·

]

= ε (H0(θ)+ εH1(θ)+ · · · ) (1 − H0(θ)− εH1(θ)− · · · ) eθ .

Equating the coefficients of like powers of ε in the left and right sides of the last equation, we obtain

H0(θ) = 1
2

±
√

1
4

− α0θe−θ ,

H1(θ) = θ(α1H′
0 + α0)

H′
0(1 − 2H0)eθ

,

H2(θ) = θ
(

α1H′
1 + α2H′

0

) + H′
0H2

1eθ + H1
(

1 − H′
1

)

(1 − 2H0) eθ

H′
0(1 − 2H0)eθ

.

The coefficients in the expression (14) αi (i = 0, 1, 2, . . . ) are found from the continuity of the functions
Hi = Hi(θ) at θ = 1. Thus, we have

α∗ = e/4(1 − 2
√

2ε − 49/9ε2)+ O(ε3).

For β �= 0 we obtain the following approximate formula

α∗ = (1 − β)e/4(1 − 2
√

2ε)+ · · · .
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The value α = α∗∗ and corresponding false canard can be found in the same way. For this case we
obtain

α∗∗ = e/4(1 + 2
√

2ε − 49/9ε2)+ O(ε3).

4 Model with distributed parameters

The approach suggested may also be applied for the calculation of the critical value of the parameter in the
case of a model with distributed parameters, taking into consideration the processes of thermal conductivity
and diffusion. A one-dimensional slow invariant manifold corresponds to the critical regime. This manifold
can be found in parametric form as follows:

θ = �(v, ξ , ε) = θ0(v, ξ)+ εθ1(v, ξ)+ O(ε2),

η = H(v, ξ , ε) = η0(v, ξ)+ εη1(v, ξ)+ O(ε2),
dv
dτ

= V(v, ε) = V0(v)+ εV1(v)+ O(ε2).

(15)

The coefficient δ will also be found as an asymptotical expansion:

δ = δ(ε) = δ0(1 + εδ1)+ O(ε2). (16)

The functions � and H satisfy the equations

ε
∂�

∂v
V =H(1 − H) exp (�/(1+β�))+ 1

δ(ε)
Dξ�, (17)

ε
∂H
∂v

V =εH(1 − H) exp (�/(1 + β�))+ 1
�

DξH, (18)

and the boundary conditions

∂�

∂ξ

∣
∣
∣
∣
ξ=0

= 0, �

∣
∣
∣
ξ=1

= 0,
∂H
∂ξ

∣
∣
∣
∣
ξ=0

= 0,
∂H
∂ξ

∣
∣
∣
∣
ξ=1

= 0, (19)

which are obtained by substituting θ , η, δ by �, H, δ(ε) in (6)–(8).
Substituting (15)–(16) in (17)–(19) and setting ε = 0, we obtain

0 = H0(1 − H0) exp (�0/(1 + β�0))+ 1
δ0

Dξ�0, (20)

∂�0

∂ξ

∣
∣
∣
∣
ξ=0

= 0, �0

∣
∣
∣
ξ=1

= 0, (21)

0 = 1
�

DξH0, (22)

∂H0

∂ξ

∣
∣
∣
∣
ξ=0

= 0,
∂H0

∂ξ

∣
∣
∣
∣
ξ=1

= 0 (23)

Equations (20), (22) with boundary conditions (21), (23) make it possible to determine �0 and H0 = v.
The condition of self-intersection of �0 at v = 1/2 allows us to get δ0.

The functions �1 and H1 are defined by the equations

V0
∂�0

∂v
= H0(1 − H0) exp (�0/(1 + β�0))�1/(1 + β�0)

2

+(1 − 2H0) exp(�0/(1 + β�0))H1 − δ1

δ0
Dξ�0 + 1

δ0
Dξ�1, (24)
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V0 =H0(1 − H0) exp (�0/(1 + β�0))+ 1
�

DξH1, (25)

and the boundary conditions

∂�1

∂ξ

∣
∣
∣
∣
ξ=0

= 0, �1

∣
∣
∣
ξ=1

= 0, (26)

∂H1

∂ξ

∣
∣
∣
∣
ξ=0

= 0,
∂H1

∂ξ

∣
∣
∣
∣
ξ=1

= 0. (27)

Integrating by parts (25) and taking into consideration (27), we obtain

V0 = (n + 1)v(1 − v)

1∫

0

exp (�0/(1 + β�0))dξ .

To find δ1 we consider the linear boundary-value problem (24), (26) for v = 1/2. Let ψ(ξ) be the
eigenfunction of the corresponding homogeneous boundary-value problem. The existence condition of
the nonhomogeneous problem (24), (26) for v = 1/2 has the form

1∫

0

[
∂�0

∂v
V0 − (1 − 2v) exp (�0/(1 + β�0))H1 + δ1

δ0
Dξ�0

] ∣
∣
∣
∣
v=1/2

dξ .

From the last equation we obtain

δ1 = −
1∫

0

∂�0

∂v
V0

∣
∣
∣
∣
v=1/2

dξ
/ 1∫

0

Dξ�0

∣
∣
∣
∣
v=1/2

dξ .

Note that function H1 is superfluous in our consideration. This implies that the value δ1 is independent
of �, like δ0.

Thus

δ∗ = δ0(1 + |δ1|ε + O(ε2))

corresponds to a canard and gives the required critical condition for a thermal explosion. The value

δ∗∗ = δ0(1 − |δ1|ε + O(ε2))

corresponds to a false canard. The interval (δ∗, δ∗∗) corresponds to transitional combustion regimes. For
the difference of the values δ∗ and δ∗∗ we have

δ∗ − δ∗∗ = 2δ0|δ1|ε + O(ε2).

Now we put β = 0 and give the results of our calculations for plane-parallel (n = 0), cylindrical (n = 1)
and spherical (n = 2) reactors:

n = 0, δ0 = 3·5138, |δ1| = 2·22, δ∗ − δ∗∗ � 15·58ε,
n = 1, δ0 = 8, |δ1| = 16 4−π

4+π � 1·92, δ∗ − δ∗∗ � 30·77ε,
n = 2, δ0 = 13·32, |δ1| = 1·74, δ∗ − δ∗∗ � 46·35ε.



J Eng Math (2006) 56:143–160 151

5 Gas combustion in an inert medium

In the absence of external heat dissipation (κ = 0) the system of differential Eqs. (9)–(11) possesses a first
integral, namely

η − γ θ − γcθc = η̄0,

and therefore we obtain

γ
dθ
dτ

= η(1 − η) exp

(
θ

1 + βθ

)

− α

(

1 + γ

γc

)

θ + α

γc
(η − η̄0), (28)

dη
dτ

= η(1 − η) exp

(
θ

1 + βθ

)

(29)

with initial conditions

η(0) = η̄0, θ(0) = 0.

The dependence of the slow curve Sα

F(η, θ ,α) = η(1 − η) exp

(
θ

1 + βθ

)

− α

(

θ − η − η̄0

γc

)

= 0

on the relation between parameter values gives different forms (see Fig. 3).
We take α as control parameter with fixed γc. The point θ = θ∗, η = η∗ is the self-intersection point of

the slow curve at α = α0. Here, α = α0, θ = θ∗, η = η∗ satisfy the system

F(η, θ ,α) = Fη(η, θ ,α) = Fθ (η, θ ,α) = 0.
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Fig. 3 The trajectories (the solid line) of the system (28), (29) and the slow curve (the dashed line) in various cases
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For α > α0 each set Ss
α and Su

α of Sα consists of a single connected curve; see Fig. 3(a). Hence the system
has an stable invariant manifold Ss

α,γ and an unstable invariant manifold Su
α,γ near Ss

α and Su
α , respectively.

Since the initial point (0, η̄0) belongs to the basin of attraction of the set Ss
α,γ , after a short time the

trajectory follows the stable slow invariant manifold Ss
α,γ and tends to the equilibrium P((1−η̄0)/(γ+γc), 1)

as t tends to ∞. This behavior corresponds to the slow combustion regime; see Fig. 4.
For α < α0 each set Ss

α and Su
α consists of two different components (Fig. 3(b)) and the system has an

stable invariant manifold Ss
α,γ (unstable invariant manifold Su

α,γ ) near each component of Ss
α (Su

α). For γ
sufficiently small and after a short time, the solution will follow the component of Ss

α,γ to breakdown point.
After this time, θ(t) will increase rapidly. This behavior characterizes the explosive regime; see Fig. 5.

The transition region from the slow to the explosive regime exists due to the continuous dependence
of our system on the parameters α and γc (γc > 0). In this special case (α = α0) the slow curve has an
intersection point (θ∗, η∗); see Fig. 3(c). Here the system has a stable invariant manifold Ss

α,γ (unstable
invariant manifold Su

α,γ ) near each component of the slow curve Ss
α (Su

α).
We can observe the existence of canard solutions that describe the following regime: the temperature

increases as high as is possible but without explosion (see Fig. 6); this may be the aim of technological
process. We note that this regime is critical, and corresponds to a chemical reaction separating the domain
of self-accelerating reactions and the domain of slow reactions.

We can find the canard solution and corresponding value of α by the following asymptotic expansions

α∗ = α(γ ) = α0 + γα1 + γ 2α2 + · · · ,

η = H(θ , γ ) = H0(θ)+ γH1(θ)+ γ 2H2(θ)+ · · · .
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Fig. 4 The trajectory of the system (28), (29) and the temperature–time characteristics for α = 1·4, β = 0·1, γ = 0·01,
γc = 0·7, η̄0 = 0·02

Fig. 5 The trajectory of the system (28), (29) and the temperature–time characteristics for α = 0·7, β = 0·1, γ = 0·01,
γc = 1·1, η̄0 = 0·02
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Fig. 6 The trajectory of the system (28), (29) and the temperature–time characteristics for α = α∗ = 0·949, β = 0·1, γ = 0·01,
γc = 0·7, η̄0 = 0·02

We substitute these expansions in (28), (29) and obtain
(

H(θ , γ ) (1 − H(θ , γ )) exp

(
θ

1 + βθ

)

− α(γ )

(

1 + γ

γc

)

θ + α(γ )

γc
(H(θ , γ )− η̄0)

)

H′(θ , γ )

= γH(θ , γ ) (1 − H(θ , γ )) exp

(
θ

1 + βθ

)

or, in more detailed form,
(

(H0(θ)+ γH1(θ)+ · · · ) (1 − H0(θ)− γH1(θ)− · · · ) exp

(
θ

1 + βθ

)

− (α0 + γα1 + · · · )
(

1 + γ

γc

)

θ

+ (α0+γα1 + · · · )
γc

(H0(θ)+ γH1(θ)+· · · − η̄0)

)[

H
′
0(θ)+ γH

′
1(θ)+ · · ·

]

= γ (H0(θ)+ γH1(θ)+ · · · ) (1 − H0(θ)− γH1(θ)− · · · ) exp

(
θ

1 + βθ

)

.

Equating the coefficients of like powers of γ in the left and right parts of the last equation and using the
continuity condition for the functions Hi = Hi(θ) (i = 0, 1, 2, . . . ) at θ = θ∗, we obtain

α0 = γc(2η∗ − 1) exp

(
θ∗

1 + βθ∗

)

,

α1 = −α0

[
θ∗

γcθ∗ − η∗ + η̄0
+ −1+2η∗ + √

(1 − 2η∗)2 + 2η∗(1 − η∗) (1 − 2β(1 + βθ∗))
η∗(1 − η∗) (1 − 2β(1 + βθ∗))

(1 + βθ∗)2
]

.

Here, θ = θ∗ is a root of the equation

γc (1 + βθ)4 = γcθ
2 − θ(1 − 2η̄0)+ γ−1

c (η̄2
0 − η̄0),

and η∗ = H0(θ
∗), where the function H0 = H0(θ) is determined by

H0(1 − H0) exp

(
θ

1 + βθ

)

− α0θ + α0
H0 − η̄0

γc
= 0.

For β = 0 we have

θ∗|β=0 = θ∗
0 = 1

2

(

γ−1
c (1 − 2η̄0)+

√

4 + γ−2
c

)

,

η∗|β=0 = 1
2

(

1 +
√

1 + 4γ 2
c

)

− γc, α0|β=0 = exp θ∗
0

2 +
√

4 + γ−2
c

.
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Fig. 7 The slow surface
(the dark area) and the
surface of irregular points
(the light area) of the
system (9)–(11)
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For example, in the case η̄0 = 0, the asymptotic expansion of the canard value of parameter α is [13,
14] (we take the zero-approximation term with order O(β) and the first-approximation term with order
O(γ )):

α∗ = 1 − βθ∗
0

2

2 +
√

4 + γ−2
c

eθ0
∗
[

1 − γ

(

1
2
γ−2

c + 1
2
γ−1

c (2 +
√

4 + γ−2
c )+ 4

√

4+γ−2
c

√

2 +
√

4 + γ−2
c

)]

,

θ∗
0 = 1

2

(

γ−1
c +

√

4 + γ−2
c

)

.

For κ �= 0 we obtain the problem for constructing the critical trajectory in R3. The breakdown curve
separates the stable subset (Ss) of the slow surface S and the unstable one (Su); see Fig. 7. Here S is
described by the equation

F(η, θ , θc,α) = η(1 − η) exp

(
θ

1 + βθ

)

− α(θ − θc)− κθ = 0,

Ss = {(η, θ , θc) : Fθ (η, θ , θc,α) < 0},
Su = {(η, θ , θc) : Fθ (η, θ , θc,α) > 0}.

The different types of chemical regimes take place depending on the relation between values of the
parameters; see Figs. 8 and 9. We shall use a canard as a separating solution corresponding to the critical
regime of the chemical reaction. We can find the canard solution and the corresponding value of α by the
following asymptotic expansions

α∗ = α(γ ) = α0 + γα1 + γ 2 . . . ,

θ = θ(η, γ ) = φ0(η)+ γφ1(η)+ γ 2 . . . ,

θc = θc(η, γ ) = ψ0(η)+ γψ1(η)+ γ 2 . . . .

From the system (9)–(11) we have

γ θ ′(η, γ )η (1 − η) exp

(
θ(η, γ )

1 + βθ(η, γ )

)

= η (1 − η) exp

(
θ(η, γ )

1 + βθ(η, γ )

)

− α(γ ) (θ(η, γ )− θc(η, γ ))− κθ(η, γ ),

γcθ
′
c(η, γ )η (1 − η) exp

(
θ(η, γ )

1 + βθ(η, γ )

)

= α(γ ) (θ(η, γ )− θc(η, γ )) .

Substituting the asymptotic expansions for α(γ ), θ(η, γ ), θc(η, γ ) in the last relationships and equating
the coefficients of like powers of γ in the left and right parts, we obtain the equations for the functions
φi = φi(η) and ψi = ψi(η) (i = 0, 1, 2, . . . ). The coefficients αi are found from the continuity condition for
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Fig. 8 The trajectory of the system (9)–(11) and the temperature–time characteristics in the case of slow regime: α = 3,
β = 0·1, γ = 0·01, γc = 0·7, η̄0 = 0·02, κ = 0·02
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Fig. 9 The trajectory of the system (9)–(11) and the temperature–time characteristics in the case of thermal explosion:
α = 0·7, β = 0·1, γ = 0·01, γc = 0·7, η̄0 = 0·02, κ = 0·02

0

0.2

0.4

0.6

0.8

1

et
a

2 4 6 8

theta

2

4

6

8

he
ta

2 4 6 8 10 12 14

t

t

Fig. 10 The trajectory of the system (9)–(11) and the temperature–time characteristics in the case of critical regime for
α = α∗ = 0·9033, β = 0·1, γ = 0·01, γc = 0·7, η̄0 = 0·02, κ = 0·02

these functions at η = η∗. The equations

η(1 − η) exp

(
φ0

1 + βφ0

)

− α0 (φ0 − ψ0)− κφ0 = 0,

γcψ
′
0η(1 − η) exp

(
φ0

1 + βφ0

)

= α0 (φ0 − ψ0) , ψ0(η̄0) = 0,

η∗(1 − η∗) exp

(
φ0(η

∗)
1 + βφ0(η∗)

)
1

(1 + βφ0(η∗))2
− (α0 + κ) = 0,

(1 − 2η∗) exp

(
φ0(η

∗)
1 + βφ0(η∗)

)

+ α0ψ
′
0(η

∗) = 0
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define the value α0 and the functions φ0 = φ0(η) and ψ0 = ψ0(η). For the determination of α1 and the
functions φ1 = φ1(η) and ψ1 = ψ1(η) we have

φ′
0η(1 − η) exp

(
φ0

1 + βφ0

)

=
[

η(1 − η) exp

(
φ0

1 + βφ0

)
1

(1 + βφ0)2
− (α0 + κ)

]

φ1 + α0ψ1 − α1 (φ0 − ψ0) ,

η(1 − η) exp

(
φ0

1 + βφ0

)[

φ′
0 + γcψ

′
1 + φ1(γcψ

′
0 − 1)

(1 + βφ0)2

]

= −κφ1, ψ1(η̄0) = 0,

α1 = 1
φ0(η∗)− ψ0(η∗)

[

α0ψ1(η
∗)− φ′

0(η
∗)η∗(1 − η∗) exp

(
φ0(η

∗)
1 + βφ0(η∗)

)]

.

The effect of external cooling may be observed: for κ �= 0 the critical value of the parameter α = α∗
decreases; see Figs. 6 and 10.

This approach was used in [20] for a first-order reaction.

6 Conclusion

Singularly perturbed systems of differential equations describing a thermal explosion have been analyzed.
Critical and transient regimes were modeled by means of a geometric theory of singular perturbations
methods. The mathematical objects were introduced for first-order reactions and for an autocatalytic case.
These objects make it possible to follow the continuous transition of a reaction from the slow to the
explosive regime. The critical regime is modeled by a mathematical object called canard in the modern
mathematical literature. Such trajectories pass from the stable slow invariant manifold to the unstable
one. The system’s trajectories, passing some part of its way along critical trajectories, belong to the tran-
sient regimes. Thus, the transient region is separated into a region of slow transient regimes and a region
of explosive transient regimes. The asymptotic formulae for the calculation of the critical values of the
heat-loss parameter were obtained. This approach was extended to combustion models with distributed
parameters. It should be noted that such an approach was used in [21] to describe canard traveling waves.
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Appendix. Elements of the geometric theory of singularly perturbed systems

A.1 Slow integral manifolds

Consider the ordinary differential system
dx
dt

= f (x, y, t, ε),

ε
dy
dt

= g(x, y, t, ε),
(30)

with vector variables x and y, and a small positive parameter ε. The usual approach in the qualitative study
of (30) is to consider first the degenerate system
dx
dt

= f (x, y, t, 0),

0 = g(x, y, t, 0),
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and then to draw conclusions about the qualitative behavior of the full system (30) for sufficiently small ε.
A special case of this approach is the quasi-steady-state assumption. A mathematical justification of that
method can be given by means of the theory of integral manifolds for singularly perturbed systems (30).
In order to recall a basic result of the geometric theory of singularly perturbed systems, we introduce the
following terminology and assumptions.
The system of equations

dx
dt

= f (x, y, t, ε) (31)

represents the slow subsystem, and the system of equations

ε
dy
dt

= g(x, y, t, ε) (32)

the fast subsystem, so it is natural to call (31) the slow subsystem and (32) the fast subsystem of system (30).
In the present paper we use a method for the qualitative asymptotic analysis of differential equations with
singular perturbations. The method relies on the theory of integral manifolds, which essentially replaces
the original system by another on an integral manifold with dimension equal to that of the slow subsystem.
In the zero-epsilon approximation (ε = 0), this method leads to a modification of the quasi-steady-state
approximation. Recall, that a smooth surface S in Rm × Rn × R is called an integral manifold of the system
(30) if any trajectory of the system having at least one point in common with S lies entirely in S. Formally,
if (x(t0), y(t0), t0) ∈ S, then the trajectory (x(t, ε), y(t, ε), t) lies entirely in S. An integral manifold of an
autonomous system

ẋ = f (x, y, ε),

εẏ = g(x, y, ε)

has the form S1 × (−∞, ∞), where S1 is a surface in the phase space Rm × Rn. The only integral manifolds
of system (30) of relevance here are those of dimension m (the dimension of the slow variables) that can
be represented as the graphs of vector- valued functions

y = h(x, t, ε).

We also stipulate that h(x, t, 0) = h(0)(x, t), where h(0)(x, t) is a function whose graph is a sheet of the slow
surface, and we assume that h(x, t, ε) is a sufficiently smooth function of ε. In autonomous systems the
integral manifolds will be graphs of functions

y = h(x, ε).

Such integral manifolds are called manifolds of slow motions—the origin of this term lies in nonlinear
mechanics. An integral manifold may be regarded as a surface on which the phase velocity has a local min-
imum, that is, a surface characterized by the most persistent phase changes (motions). Integral manifolds
of slow motions constitute a refinement of the sheets of the slow surface, obtained by taking the small
parameter ε into consideration.

The motion along an integral manifold is governed by the equation

ẋ = f (x, h(x, t, ε), t, ε).

If x(t, ε) is a solution of this equation, then the pair
(

x(t, ε), y(t, ε)
)

, where y(t, ε) = h(x(t, ε), t, ε), is a

solution of the original system (30), since it defines a trajectory on the integral manifold.
Consider the boundary-layer subsystem, that is,

dy
dτ

= g(x, y, t, 0), τ = t/ε,
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treating x and t as parameters. We shall assume that some of the steady states y0 = y0(x, t) of this subsystem
are asymptotically stable and that a trajectory starting at any point of the domain approaches one of these
states as closely as desired as t → ∞. This assumption will hold, for example, if the matrix

(∂g/∂y)(x, y0(x, t), t, 0)

is stable for part of the stationary states and the domain can be represented as the union of the domains of
attraction of the asymptotically stable steady states.

Let Ii be the interval Ii := {ε ∈ R: 0 < ε < εi}, where 0 < εi � 1, i = 0, 1, . . . .

(i) f : Rm × Rn × R × I0 → Rm, g: Rm × Rn × R × I0 → Rn are sufficiently smooth and uniformly
bounded together with their derivatives.

(ii) There is some region G ∈ Rm and a map h : G × R → Rm of the same smoothness as g such that

g(x, h(x, t), t, 0) ≡ 0, ∀(x, t) ∈ G × R.

(iii) The spectrum of the Jacobian matrix gy(x, h(x, t), t, 0) is uniformly separated from the imaginary axis
for all (x, t) ∈ G × R.

Then the following result is valid:

Proposition Under the assumptions (i)–(iii) there is a sufficiently small positive ε1, ε1 ≤ ε0, such that, for
ε ∈ I1, system (30) has a smooth integral manifold Mε with the representation

Mε := {(x, y, t) ∈ Rn+m+1 : y = ψ(x, t, ε), (x, t) ∈ G × R}.
Remark The global boundedness assumption in (i) with respect to (x, y) can be relaxed by modifying f
and g outside some bounded region of Rn × Rm.

A.2 Asymptotic representation of integral manifolds

When the method of integral manifolds is being used to solve a specific problem, a central question is
the calculation of the function h(x, t, ε) in terms of the manifold described. An exact calculation is gener-
ally impossible, and various approximations are necessary. One possibility is the asymptotic expansion of
h(x, t, ε) in integer powers of the small parameter:

h(x, t, ε)=h0(x, t)+εh1(x, t)+· · ·+εkhk(x, t)+ · · · .

Substituting this formal expansion in Eq. (32) i.e.,

ε
∂h
∂t

+ ε
∂h
∂x

f (x, h(x, t, ε), t, ε) = g(x, h, ε),

we obtain the relationship

ε
∑

k≥0

εk ∂hk

∂t
+ ε

∑

k≥0

εk ∂hk

∂x
f

⎛

⎝x,
∑

k≥0

εkhk, t, ε

⎞

⎠ = g

⎛

⎝x,
∑

k≥0

εkhk, t, ε

⎞

⎠ . (33)

We use the formal asymptotic representations

f

⎛

⎝x,
∑

k≥0

εkhk, t, ε

⎞

⎠ =
∑

k≥0

εkf (k)(x, h0, . . . , hk−1, t),

and

g

⎛

⎝x,
∑

k≥0

εkhk, t, ε

⎞

⎠ = B(x, t)
∑

k≥1

εkhk +
∑

k≥1

εkg(k)(x, h0, . . . , hk−1, t),
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where the matrix B(x, t) ≡ (∂g/∂y)(x, h0, t, 0), and where

g(x, h(0)(x, t), t, 0) = 0.

Substituting these formal expansions in (33) and equating like powers of ε, we obtain

∂hk−1

∂t
+

∑

0≤p≤k−1

∂hp

∂x
f (k−1−p) = Bhk + g(k).

Since B is invertible

hk = B−1

⎡

⎣g(k) − ∂hk−1

∂t
−

∑

0≤p≤k−1

∂hp

∂x
f (k−1−p)

⎤

⎦ .

A.3 Stability of slow integral manifolds

In applications it is often assumed that the spectrum of the Jacobian matrix

gy(x, h(x, t), t, 0)

is located in the left half plane. Under this additional hypothesis the manifold Mε is exponentially attract-
ing for ε ∈ I1. In this case, the solution x = x(t, ε), y = y(t, ε) of the original system that satisfied the initial
condition x(t0, ε) = x0, y(t0, ε) = y0 can be represented as

x(t, ε) = v(t, ε)+ εϕ1(t, ε),

y(t, ε) = ȳ(t, ε)+ ϕ2(t, ε). (34)

There exists a point v0 which is the initial value for a solution v(t, ε) of the equation v̇ = f (v, h(v, t, ε), t, ε);
the functions ϕ1(t, ε), ϕ2(t, ε) are corrections that determine the degree to which trajectories passing near
the manifold tend asymptotically to the corresponding trajectories on the manifold as t increases. They
satisfy the following inequalities:

|ϕi(t, ε)| ≤ N|y0 − h(x0, t0, ε)| exp[−β(t − t0)/ε], i = 1, 2, for t ≥ t0. (35)

From (34) and (35) we obtain the following reduction principle for a stable integral manifold defined
by a function y = h(x, t, ε): a solution x = x(t, ε), y = h(x(t, ε), t, ε) of the original system (30) is sta-
ble (asymptotically stable, unstable) if and only if the corresponding solution of the system of equations
v̇ = F(v, t, ε) = f (x, h(x, t, ε), t, ε) on the integral manifold is stable (asymptotically stable, unstable). The
Lyapunov reduction principle was extended to ordinary differential systems with Lipschitz right-hand sides
by Pliss (1964), and to singularly perturbed systems by Strygin and Sobolev (1977). Thanks to the reduction
principle and the representation (34), the qualitative behavior of trajectories of the original system near
the integral manifold may be investigated by analyzing the equation on the manifold.

The corresponding results for a class of semi-linear singularly perturbed differential systems can be
found in [22].
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